A Formal Synthesis of (-)-Cephalotaxine

William R. Esmieu,[†] Stephen M. Worden,[†] David Catterick,[‡] Claire Wilson,[†] and Christopher J. Hayes^{*,†}

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K., and GlaxoSmithKline, Old Powder Mills, Tonbridge, Kent TN11 9AN, U.K.

chris.hayes@nottingham.ac.uk

Received May 2, 2008

ABSTRACT

An enantioselective formal synthesis of the alkaloid (–)-cephalotaxine has been completed, using an alkylidene carbene 1,5-CH insertion reaction as a key step to construct the spiro[4.4]azanonane core D/E-ring system. A Heck-type cyclization was used to close the tetrahydroazepine C-ring and a selective epoxidation—rearrangement sequence was used to elaborate the E-ring.

Since its isolation in 1963,¹ the polycyclic alkaloid (–)cephalotaxine (1) has become an enduring target for total chemical synthesis (Figure 1).^{2,3} The continued interest in this molecule is due to a combination of its fascinating chemical structure and it being the parent of a larger family of related alkaloid esters that show clinically useful anticancer activity. Homoharringtonine (2), for example, is undergoing clinical trials for use as an antileukemia drug.⁴

(2) (a) Racemic syntheses: Auerbach, J.; Weinreb, S. M. J. Am. Chem. Soc. 1972, 94, 7172. (b) Semmelhack, M. F.; Chong, B. P.; Jones, L. D. J. Am. Chem. Soc. 1972, 94, 8629. (c) Semmelhack, M. F.; Chong, B. P.; Stauffer, R. D.; Rogerson, T. D.; Chong, A.; Jones, L. D. J. Am. Chem. Soc. 1975, 97, 2507. (d) Weinreb, S. M.; Auerbach, J. J. Am. Chem. Soc. 1975, 97, 2503. (e) Burkholder, T. P.; Fuchs, P. L. J. Am. Chem. Soc. 1988, 110, 2341. (f) Kuehne, M. E.; Bornmann, W. G.; Parsons, W. H.; Spitzer, T. D.; Blount, J. F.; Zubieta, J. J. Org. Chem. 1988, 53, 3439. (g) Burkholder, T. P.; Fuchs, P. L. J. Am. Chem. Soc. 1990, 112, 9601. (h) Ishibashi, H.; Okano, M.; Tamaki, H.; Maruyama, K.; Yakura, T.; Ikeda, M. J. Chem. Soc., Chem. Commun. 1990, 1436. (i) Ikeda, M.; Okano, M.; Kosaka, K.; Kido, M.; Ishibashi, H. Chem. Pharm. Bull. 1993, 41, 276. (j) Lin, X.; Kavash, R. W.; Mariano, P. S. J. Am. Chem. Soc. 1994, 116, 9791. (k) Lin, X.; Kavash, R. W.; Mariano, P. S. J. Org. Chem. 1996, 61, 7335. (1) Tietze, L. F.; Schirok, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1124. (m) Koseki, Y.; Sato, H.; Watanabe, Y.; Nagasaka, T. Org. Lett. 2002, 4, 885. (n) Li, W.-D. Z.; Wang, Y.-Q. Org. Lett. 2003, 5, 2931. (o) Li, W.-D. Z.; Ma, B.-C. J. Org. Chem. 2005, 70, 3277. (p) Ma, B.-C.; Wang, Y.-Q.; Li, W.-D. Z. J. Org. Chem. 2005, 70, 4528. (q) Li, W.-D. Z.; Wang, X.-W. Org. Lett. 2007, 9, 1211.

10.1021/ol8010166 CCC: \$40.75 © 2008 American Chemical Society Published on Web 06/13/2008

Figure 1. Structures of cephalotaxine (1) and homoharringtonine (2)

A number of racemic² and enantioselective³ syntheses of cephalotaxine have been published to date, and the efficient asymmetric construction of the embedded spiro[4.4]azanonane ring system has proven to be a significant challenge. Our

[†] University of Nottingham.

[‡] GlaxoSmithKline.

^{(1) (}a) Isolation: Paudler, W. W.; Kerley, G. I.; McKay, J. J. Org. Chem. **1963**, 28, 2194. (b) Structure elucidation: Abraham, D. J.; Rosenstein, R. D.; McGandy, E. L. Tetrahedron Lett. **1969**, 4085. (c) Arora, S. K.; Bates, R. B.; Grady, R. A.; Powell, R. G. J. Org. Chem. **1974**, 39, 1269.

^{(3) (}a) Enantioselective syntheses: Zhong, S.; Liu, W.; Ling, Y.; Li, R. Zhongguo Yaowu Huaxue Zazhi 1994, 4, 84. (b) Isono, N.; Mori, M. J. Org. Chem. 1995, 60, 115. (c) Nagasaka, T.; Sato, H.; Saeki, S.-I. Tetrahedron: Asymmetry 1997, 8, 191. (d) Ikeda, M.; El Bialy, S. A. A.; Hirose, K.-I.; Kotake, M.; Sato, T.; Bayomi, S. M. M.; Shehata, I. A.; Abdelal, A. M.; Gad, L. M.; Yakura, T. Chem. Pharm. Bull. 1999, 47, 983. (e) Tietze, L. F.; Schirok, H. J. Am. Chem. Soc. 1999, 121, 10264. (f) El Bialy, S. A. A.; Ismail, M. A.; Gad, L. M.; Abdelal, A. M. M. Med. Chem. Res. 2002, 11, 293. (g) Planas, L.; Perard-Viret, J.; Royer, J. J. Org. Chem. 2004, 69, 3087. (h) Eckelbarger, J. D.; Wilmot, J. T.; Gin, D. Y. J. Am. Chem. Soc. 2006, 128, 10370. (i) Zhao, Z.; Mariano, P. S. Tetrahedron 2006, 62, 7266. (j) Liu, Q.; Ferreira, E. M.; Stoltz, B. M. J. Org. Chem. 2007, 72, 7352.

previous model study in this area showed that this spirocycle could be constructed using an alkylidene carbene 1,5-CH insertion reaction,⁵ and we now wish to report the successful application of this novel strategy to an enantioselective formal total synthesis of 1. Weinreb first showed that 1 can be synthesized from the related natural product demethylcephalotaxinone (3) in two steps,^{2a} and this dione therefore became our interim target. We were aware of previous synthetic work that had shown that β -amino ketones such as 3 have to be handled with care as they can undergo racemization of the nitrogen-bearing quaternary stereocenter via sequential elimination-Michael addition reactions.^{2k,3b} In order to minimize our exposure to this racemization problem, we decided to attempt installation of the α -dicarbonyls at a late stage in our synthesis from the cyclopentene 5 via oxidation to the enone 4 and subsequent oxidative cleavage to provide 3 (Scheme 1).

Disconnection of **5** revealed the spiro[4.4]azanonane **7** as an advanced precursor, with the tetrahydroazepine ring being formed in the synthetic direction via a Heck-type cyclization similar to that used by Tietze et al. (i.e., $7 \rightarrow 5$).^{3e} We envisaged that the aromatic iodide **7** could be accessed from **6**, which itself could be constructed via a 1,5-CH insertion reaction of the pyrrolidine-substituted alkylidene carbene **8**. Our first synthetic task, therefore, was to prepare a suitable precursor to the alkylidene carbene **8**.

Our chosen carbene precursor was the vinyl chloride 13, and this was easily prepared in seven steps from *N*-Boc-proline methyl ester (9) (Scheme 2). Reduction of 9 with Dibal-H gave

Scheme 2. Synthesis of Pentacycle 5

the corresponding aldehyde, and this was homologated with 1-triphenylphosphoranylidene-2-propanone to give the E-enone. Catalytic hydrogenation $(Pd(OH)_2/C, H_2)$ then gave 10, and a second Wittig reaction then afforded the vinyl chloride 11 (3: 1, E:Z) in good overall yield. Deprotection (TFA, CH₂Cl₂), amide formation with the carboxylic acid 12 (EDCI, HOBt), and reduction of the resulting amide (LiAlH₄) then afforded the desired alkylidene carbene precursor 13. The pivotal alkylidene carbene 1,5-CH insertion reaction was then effected by teatment of 13 with KHMDS (2 equiv)⁶ at room temperature to afford the desired spiro[4.4]azanonane 6 in good yield (65-79%). Regioselective iodination of the aromatic ring (TFA, I₂, CF₃CO₂Ag) then gave the key Heck-cyclization precursor 7.^{3e} At this stage, an X-ray crystal structure of the iodide 7 was obtained (Figure 2).⁷ In addition to demonstrating spirocycle formation, the presence of the iodine atom allowed us to confirm the molecule's absolute stereochemistry, thus demonstrating that the 1.5-CH insertion reaction had proceeded with retention of configuration as expected.

The Heck cyclization $(7 \rightarrow 5)$ proved to be much more difficult than we had expected and required extensive optimization (Scheme 2). Hermann and Beller's palladacycle catalyst⁸ gave only low and capricious yields of **5**, while the use of more traditional conditions (Pd(OAc)₂/Ph₃P/K₂CO₃) gave the enamine **14** as the major product (84%)⁹ with the desired pentacycle **5** representing only a minor

^{(4) (}a) Levy, V.; Zohar, S.; Bardin, C.; Vekhoff, A.; Chaoui, D.; Rio, B.; Legrand, O.; Sentenac, S.; Rousselot, P.; Raffoux, E.; Chast, F.; Chevret, S.; Marie, J. P. *Br. J. Cancer* **2006**, *95*, 253. (b) Kantarjian, H. M.; Talpaz, M.; Santini, V.; Murgo, A.; Cheson, B.; O'Brien, S. M. *Cancer* **2001**, *92*, 1591.

⁽⁵⁾ Worden, S. M.; Mapitse, R.; Hayes, C. J. Tetrahedron Lett. 2002, 43, 6011.

^{(6) (}a) Taber, D. F.; Christos, T. E.; Neubert, T. D.; Batra, D. J. Org. Chem. 1999, 64, 9673. (b) Taber, D. F.; Neubert, T. D. J. Org. Chem. 2001, 66, 143. (c) Taber, D. F.; Neubert, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12416. (d) Auty, J. M. A.; Churcher, I.; Hayes, C. J. Synlett 2004, 1443. (e) Hayes, C. J.; Sherlock, A. E.; Selby, M. D. Org. Biol. Chem. 2006, 4, 193. (f) Bradley, D. M.; Mapitse, R.; Thomson, N. M.; Hayes, C. J. J. Org. Chem. 2002, 67, 7613. (g) Green, M. P.; Prodger, J. C.; Sherlock, A. E.; Hayes, C. J. Org. Lett. 2001, 3, 3377.

⁽⁷⁾ The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre. CCDC 682009 contains the supplementary crystallographic data for **7**, and CCDC 682010 contains the supplementary crystallographic data for **15**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure 2. X-ray crystal structure of spirocycle 7.

component (14%). In contrast to these somewhat disappointing results, the desired cyclization could be effected in acceptable yield (61%) by using a slightly modified version of Fu's conditions (Pd(OAc)₂, BF₄H·PⁱBu₃, Cs₂CO₃, dioxane reflux).¹⁰ Under these conditions, the enamine **14** was still formed (30%), but it was easily separated from **5** via SiO₂ column chromatography. It was essential to use Pd(OAc)₂ as the palladium source in this reaction as the use of Pd(0) precatalysts (e.g., Pd₂(dba)₃) gave inferior results with the reduced compound **6** (12%) being produced in addition to the enamine **14** (23%) and the desired compound **5** (41%).

Having closed the C-ring of cephalotaxine, our next challenge was elaboration of the E-ring (Scheme 3). Under

Scheme 3. Elaboration of the E-Ring^a

^{*a*}Key: (a) BF₃·OEt₂, Et₂O, -78 °C, then DMDO, CH₂Cl₂, 0 °C, 63–90%; (b) *n*-BuLi, TMP, AlEt₂Cl, toluene, 0 °C, quant; (c) (COCl)₂, DMSO, NEt₃, DCM, -60 °C, quant (to 4).

carefully optimized conditions the alkene was epoxidized in the presence of the tertiary amine using either DMDO/

BF₃•OEt₂ $(63-90\%)^{11,12}$ or *m*-CPBA/TFA (60%), and the stereochemistry of the epoxide **15** was confirmed by X-ray crystallography (Figure 3).⁷

Figure 3. X-ray crystal structure of epoxide 15.

Regioselective rearrangement of the epoxide **15** using Yamamoto's conditions¹³then produced the allylic alcohol **16** in quantitative yield, and oxidation of **16** under Swern conditions finally afforded the desired enone **4**. Unfortunately, we were not able to effect the desired oxidative cleavage reaction of **4** to produce demethylcephalotaxinone (**3**) as the enone **4** proved to be quite unstable and spontaneously dimerized in solution to afford the endo hetero-Diels—Alder adduct **17** in a regio- and stereoselective manner (Scheme 3).¹⁴ As oxidative cleavage of **4** was not possible, a modified strategy for the completion of the synthesis was developed (Scheme 4).

^{*a*}Key: (a) Ac₂O, pyridine, 23 °C; (b) 5% aqueous HCl, reflux, 58% (three steps from **15**); (c) (COCl)₂, DMSO, NEt₃, DCM, -60 °C, 53%; (d) Rh(PPh₃)₃Cl, toluene, reflux, 20–40%.

First, the secondary alcohol **16** was converted to the acetate **18**, which was then exposed to 5% HCl_(aq) to afford the primary alcohol **19** (Scheme 4). Swern oxidation of **19** then afforded aldehyde **20**, which was then treated with Wilkinson's catalyst in toluene at reflux.¹⁵ Pleasingly, the decar-

(9) An enamine similar to **14** was observed in our previous model study, and a mechanistic rationalization was proposed. See ref 5 for full details.

(10) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989.

(11) Ferrer, M.; Sanchez-Baeza, F.; Messeguer, A.; Diez, A.; Rubiralta, M. J. Chem. Soc., Chem. Commun. 1995, 293.

(12) The yield of **15** was dependent upon the success of forming the initial BF₃ amine adduct, and the main byproduct observed was the hydroxylamine **23**. We believe that **23** is formed by fragmentation of the *N*-oxide **22** and that **22** is formed by oxidation of the residual tertiary amine **5** that remains after incomplete BF₃ amine adduct formation of **5**.

(13) Yasuda, A.; Tanaka, S.; Oshima, K.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. **1974**, *96*, 6513.

bonylated product **21** was recovered cleanly from this reaction (100% mass recovery), although a significant amount of material was lost during the final chromatographic purification on SiO_2 gel. Since Mori^{3b} has shown previously that **21** can be converted into **1**, via demethylcephalotaxinone (**3**), we have successfully completed a novel formal synthesis of (–)-cephalotaxine (**1**) using an alkylidene carbene 1,5-CH insertion as a key step.

Acknowledgment. We thank GlaxoSmithKline, Roche, the EPSRC (DTA) and The University of Nottingham for financial support of this work.

Supporting Information Available: Detailed experimental procedures, spectroscopic data, and copies of ¹H NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL8010166

⁽⁸⁾ Herrmann, W. A.; Brossmer, C.; Reisinger, C.-P.; Riermeier, T. H.; Oefele, K.; Beller, M. *Chem. Eur. J.* **1997**, *3*, 1357.

⁽¹⁴⁾ Chrobok, A.; Goessinger, E.; Kalb, R.; Orglmeister, E.; Schwaiger, J. *Tetrahedron* 2007, *63*, 8326.

⁽¹⁵⁾ Ohno, K.; Tsuji, J. J. Am. Chem. Soc. 1968, 90, 99.